
ECE:4880 Principles of Electrical and Computer Engineering Design Page 1

Lab 1
Thermometer with Web Interface

Team 7:
Matthieu Stogsdill, Makenna Maguire, Tim Evans, Austin Wittenburg

ECE:4880 Principles of Electrical and Computer Engineering Design Page 2

1. Design Documentation
Hardware Design
i. Product Overview

Figure 1: Final Prototype of Digital Thermometer with Web Interface

The final design for the 3rd box of the digital thermometer can be seen
from Figure 1. Our final design consists of several components including a
raspberry-pi as the brain and main processing unit for the product, a LCD screen
where data and update messages are displayed, a toggle latch switch for turning
the entire device on and off, a custom five pin female XLR input to be compatible
with our custom temperature probe, a 20100 mAh battery, and lastly a momentary
push button that allows the user to turn on the LCD screen for data readings. The
raspberry-pi along with all wiring, breadboard, and battery are enclosed in a
makeshift container made from a tupperware with a removable lid. The button,
and toggle switch are fastened to the lid of the container with a washer and nut
while the LCD and XLR cable input are hot glued to the lid of the container. The
battery, raspberry-pi, and breadboard are all secured to the inside of the container
with velcro.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 3

Figure 2: Final Circuit Schematic of Digital Thermometer with Web Interface

ii. List of Hardware Components
a. DS18B20 Waterproof Temperature Sensor Cable

Figure 3: DS18B20 Waterproof Sensor Cable (Unmodified)

ECE:4880 Principles of Electrical and Computer Engineering Design Page 4

The temperature sensor used for this design is the DS18B20 Waterproof temperature
sensor cable. It is a digital thermo probe that uses 1-wire interface making it easy to
communicate with raspberry-pi and send temperature data. It is able to measure temperatures
ranging from (-55° C to +125° C) or (-67° F to +257° F) which meets the requirements for this
lab. It has a stainless steel head allowing it to endure wet conditions. It connects via three wires
(Data, Ground, Vcc) which can be seen in Figure 3. The operating supply voltage to Vcc is
anywhere within the range of 3.0V - 5.5V which fits nicely with either of the raspberry-pis 3.3V
or 5.0V supply pins.

Figure 4: Stainless Steel Cap and Pin Definitions for DS18B20 Temperature Probe

b. 5-Pin XLR Cable Connectors Male/Female

Figure 5: 5-Pin XLR Cable Connectors Female (left) and Male (right)

As part of the requirement for this design the temperature probe must have a terminating
connector. As can be seen from Figure 4 the probe originally had free wires to make the
connections so modifications needed to be made. In the final design of the product the data,

ECE:4880 Principles of Electrical and Computer Engineering Design Page 5

ground, and vcc wires were soldered to the 5-pin XLR male connector. On the female side wires
were soldered onto the corresponding position so that the pins lined up when the temperature
probe was plugged into the 3rd box via this new female XLR connector. The new modified
temperature probe with both the male and female connectors can be seen in Figure 6 and the
corresponding pinout for both can be seen in Figure 7.

Figure 6: Modified Temperature Probe with Male XLR Connector (left) Modified Female XLR
Connector (right)

Figure 7: Pinout for Male XLR Connector (left) and Female XLR Connector (right)

ECE:4880 Principles of Electrical and Computer Engineering Design Page 6

c. Raspberry-Pi

Figure 8: Raspberry-Pi 3 Model B

The main processing unit for this design is the raspberry-pi 3 Model B. Since this project
requires software and hardware there needs to be a central unit that connects all components of
the design together. The raspberry pi is a microprocessor capable of connecting all of our
hardware via the GPIO pins which a pinout can be seen in Figure 16. The raspberry pi runs all of
the python files at bootup.It also has Wifi capabilities which allows us to remotely connect to the
server it hosts and read the temperature data from another computer.

d. LCD 1602

Figure 9: LCD 1602

ECE:4880 Principles of Electrical and Computer Engineering Design Page 7

The screen used to display data and error messages to the user is a simple 16 columns by
2 rows LCD. It is connected to the raspberry pi and other components on the breadboard via
jumper wires from its pins on the upper back of the LCD. The corresponding pinouts and where
they connect to on the device can be seen in Table 1.

e. Momentary Push Button

Figure 10: Momentary Push Button with Soldered Jumper Wires

The button used to control the LCD screen is a momentary push button. It is normally
open and will only close the circuit if the user presses the button and only when the user is
pressing it. Female Jumper wires were soldered onto the two pins so it connects straight to the
raspberry pi GPIO pins.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 8

f. Latching Toggle Switch

Figure 11: Latching Toggle Switch with Soldered Jumper Wires

The MTS-1 (mini toggle switch) was used to turn the device on and off. There are female
jumper wires soldered onto two of the three pins so that it connects straight to the raspberry pi
GPIO pins. The state of the switch and whether it corresponds to on or off is controlled by the
shutdown.py python script that runs at boot up of the device.

g. 50k Ohm Potentiometer

Figure 12: 50k Ohm Potentiometer

ECE:4880 Principles of Electrical and Computer Engineering Design Page 9

A 50k Ohm potentiometer is included with this device in order to control the contrast of
the LCD. If the LCD is connected straight to the 5V supply pin of the raspberry-pi the screen can
be difficult to read especially at wider angles. The potentiometer allows for contrast adjustment
and is enclosed inside the tupperware to prevent changes once the resistance is set.

h. 2N700 Transistor

Figure 13: 2N700 N-Channel MOSFET and Pinout

The 2N700 is a N-channel MOSFET which is used to physically control the LCD screen
backlight. It is connected to GPIO-24 via its gate and the pin sends a voltage whenever the
button is pushed to allow current flow and turn on the LCD backlight.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 10

i. Anker 20100 Power Bank

Figure 14: Anker 20100 Power Bank

The Anker 20100 Power Bank is a 20100 mAh portable charger. This charger is what
powers the entire device and it connects to the raspberry pi via a micro-USB cable. It is more
than capable of powering the raspberry pi and all other components who use the pi as a power
source as it can supply up to 5V and 4.8A.

j. Temperature Sensor Enclosure

Figure 15: Temperature Sensor Enclosure

The enclosure used to house the temperature sensor is a modified tupperware container
with holes cut for the LCD display, button, toggle switch, and XLR cable connector.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 11

k. Miscellaneous Components
There are a few components that are non-specific but still necessary for the
successful operation of this device. These components are as follows
-Breadboard
-Velcro
- Micro-USB cable
-Jumper wires (female-female, male-male, female-male)
-3 Resistors (1k Ohm, 4.7k Ohm, 330 Ohm

i. GPIO Pinouts & Wiring Diagram/Block Diagram

Table 1: Component Pinout and Corresponding Connections

ECE:4880 Principles of Electrical and Computer Engineering Design Page 12

Figure 16: Raspberry-Pi 3 GPIO Pinout

ii. Software Design

Figure 17: Client-Side Graphical User Interface

ECE:4880 Principles of Electrical and Computer Engineering Design Page 13

The software components of our product consists of two python scripts running on the
Raspberry Pi and one python script running on a separate computer. The Pi automatically runs
these two scripts on boot via rc.local file manipulation. The first script continuously checks two
GPIO pins for a change in state due to the switch being turned on or off. If the switch is flicked
off, the Pi runs a bash command to safely shutdown and vice versa. The second script starts a
server, continuously checks for a button press, sends temperature data once a second, and
continuously checks for client connection and messages. On the computer, a script runs a client
which connects to the Pi server. The client receives temperature data at a rate of 1 reading per
second. The client then displays this data on a graph in the graphical user interface as in Figure
17. The GUI provides several options such as changing the temperature data from fahrenheit to
celsius, sending custom text messages to any phone number, and changing the upper and lower
temperature thresholds which trigger this text message.

Server
shutdown.py:

Figure 18: shutdown.py flowchart

Shutdown.py is one of the two files that runs at the startup of the raspberry pi and it
monitors the state of the toggle switch. The file initially binds one pin of the toggle switch to a
GPIO pin of the raspberry pi and the other switch pin to a ground pin of the raspberry pi. The
script then constantly checks whether there is a falling edge or rising edge in the pin output state
which corresponds to the physical position of the switch. When the switch is flipped into the on
position it sends a boot up command to the operating system and powers on the pi and its
attached components. When the switch is flipped into the off position it sends a shutdown
command that ends all ongoing processes and safely turns the pi and its attached components off.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 14

Tempsensorserver.py:

Figure 19: handle_client() thread conditional flowchart

Tempsensorserver.py starts by initializing the server socket on port 8090. After setting up
GPIO settings and configuring directory information, the script starts the handle_client() and
check_button() threads. The handle_client function first waits for a connection from the client.
Then after the client connects, it starts the send_data() thread. This function reads temperature
data from the file that is produced by the temperature sensor. If the last three characters are not
“YES” then the function returns “NoData” as shown in Figure 20. Else it returns the temperature
in a formatted way. After the send_data() thread is started, the handle_client() thread starts a
while loop to receive messages from the client. If the message is “exit” it closes the connection.
Else if the message is “button_on” it sets a global variable screen_on to True. Else if the message
is “button_off” it sets the global variable screen_on to False. This global variable is used in the
check_button thread. The check_button thread contains an infinite while loop. It checks to see if
the button is pressed or if the screen_on global variable is true. If so, the lcd screen is powered
and either “NoData” or the temperature is written to the screen depending on if there is data as in
Figure 19.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 15

Figure 20: send_data() thread conditional flowchart

Figure 21: check_button() thread conditional flowchart

ECE:4880 Principles of Electrical and Computer Engineering Design Page 16

Client
graphclient.py:

Figure 22: graphclient.py flowchart
Graphclient.py runs on a computer separate from the Raspberry Pi. First, the script

connects to the server over socket 8090. Then it adds components to the graphical user interface
using tkinter. The script then starts to call the next_step() function every second. This function
receives a message from the server containing temperature data in celsius or a “no data”
message. If the message is “no data” then the string “NoData” is displayed to the GUI.
Otherwise, the temperature is displayed to the GUI in fahrenheit if the checkbox is checked and
in celsius otherwise. To create the graph in an animated style from right to left, the temperature
data is reversed before it is plotted. The temperature is then plotted and any missing data points
are left out using a numpy masked array. At the end of next_step() a thread is created to run the
textMessage() function. This function checks if the temp is above the max threshold or below the
min threshold. If either of these conditions are met, an sms is sent to the specified phone number.
The “Turn On Display” button widget on the GUI is bound to a function called turnOnDisplay().
If the button is pressed, a special message “button_on” is sent to the server and the button is
reconfigured to show the words “Turn Off Display” as in Figure 23 below. If that button is
pressed, a message “button_off” is sent to the server” and the button is reconfigured to show the

ECE:4880 Principles of Electrical and Computer Engineering Design Page 17

words “Turn On Display.” After the gui is closed, the client sends the message “exit” to let the
server close the connection properly and closes the connection itself.

Figure 23: GUI button reconfiguration

2. Design Process and Experimentation

For our design we compared two different design choices. The major design
pieces we compared were to use an Arduino or a Raspberry Pi. We ultimately decided on
the raspberry pi for a couple reasons. These reasons are: a raspberry pi is 40 times faster
than the Arduino when it comes to clock speed, the Pi also has 128,000 times more
RAM, and it can multitask supporting two USBs and can wirelessly connect to the
internet. The raspberry pi and arduino both were great options and some of the reasons
for choosing an Arduino are: arduino’s are much simpler which makes hardware
implementation better, also they have a real time and analog time property that pi’s do not
have, another piece is the Arduino IDE is much more user friendly. We ultimately chose
the Raspberry Pi for the reason that it is more useful for this project. We believe this
because the pi is faster making it more efficient and this project was very complex so the
faster clock speed on pi is needed to implement the amount of software and hardware we
needed.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 18

One of the hardware design tradeoffs we came to was what type of terminating
connector to make for the temperature probe. The probe needed to still read temperature
when plugged in and also notify the system if it was unplugged. There also needed to be
at least three channels for the Vcc, ground, and data connections in this connector. We
originally decided that we would solder the temperature probe to a 3.5mm Headphone
jack and use that as our connector and wire an audio jack port onto the final design where
the cable could be plugged in. The headphone jack had three channels which was perfect
to fit the needs of our project as it had the tip, ring, and sleeve connections for vcc,
ground, and data. When implementing this design we found that when you connect the
temperature probe to the system there is a momentary contact between the 5V input and
ground and it shorts the system causing the raspberry to reboot. The design choice we
ended up going with is using male and female 5-pin XLR connectors which provide the
same level as connection but without the contact of one pin touching the other.

The next step we took was to make sure we understood all the software
requirements and made a detailed agenda for what we wanted to accomplish with our
final prototype. We made a list of the requirements and which ones had higher priority
and needed to be accomplished first. The software design choices we made first started
with which program we all wanted to work with. After listing all the different languages
including Python, C++ and Java we came to a mutual conclusion that we were all
comfortable with Python. This design choice was made purely because it was best for our
group. We needed to complete this lab in a short period of time and working in a
language we all have worked on before was the reason we chose Python. The next
software piece that we debated on was how to communicate between the pi and computer
using the client-server connection. We ended up doing a graph client GUI which
encompassed all the requirements into one python script. This allowed us to control all
pieces of software from this file and keep it organized. The software components of this
lab will be changed periodically over the course of the lab since with the testing protocols
this lab requires, it has to be constantly updating. The choices we thought would work in
the design portion are not always going to be the best to achieve the goal of the lab.

3. Test Report

Test Procedure Expected Result Pass/Fail Value

Measure the temp sensor cable The cable should be 2 meters long,
± 0.1 meters

Pass 2.03 meters

Turn the power switch to the on
position

The system should boot up and
connect to the internet

Pass

ECE:4880 Principles of Electrical and Computer Engineering Design Page 19

Press the button The display should turn on and show
the user the temperature in degrees
celsius

Pass

Observe the data being displayed The data should appear with no
noticeable delay (less than 20 ms)
after pressing the button

Fail 877 ms

Observe the data being displayed The temperature should update about
once a second

Pass

Release the button The display should turn off and no
longer display anything

Pass

Observe the display When the button is released the
display should turn off with no
noticeable delay (less than 20 ms)

Pass 15 ms

Unplug the temp sensor and turn
on the display

The display should notify the user
that the temp sensor is not sending
data to the system

Pass “No Data”

Plug the sensor back in and turn on
the display

The display should now continue to
show the temperature in degrees
celsius

Pass

Dip the temperature sensor in ice
water

The temperature readout should be 0
degrees celsius ± 2 degrees

Pass 2 ℃

Examine the exterior of the system
and give the box a shake

The box should be physically robust
and capable of withstanding
reasonable amounts of force

Pass

Examine the connections of the
system

The components should have
terminating connectors

Pass

Connect to the temp sensor via
wifi

The system should allow for wifi
connected computers to access it and
get the temperature data from it

Pass

Use the computer to turn on the
display

The computer should be able to
remotely turn on the display and
show the temperature

Pass

ECE:4880 Principles of Electrical and Computer Engineering Design Page 20

Use the computer to turn off the
display

The computer should be able to turn
the display off remotely

Pass

Examine the graph on the
computer application

The computer application should
have a graph displaying the
temperature data over the last 300
seconds

Pass

Examine the graphs bounds The graphs upper bound and lower
bound should be 50 and 10 degrees
celsius respectively

Pass Upper: 50
Lower: 10

Watch the graph as it collects
temperature data

The graph should scroll from right to
left when new data is collected.

Pass

On the computer, switch the
temperature from degrees celsius
to degrees fahrenheit

The computer should be able to
display the temperature in either
degrees celsius or degrees fahrenheit
and switch between them on
command

Pass

Unplug the temp sensor from the
box again

The computer application should
clearly show on the graph when there
is missing data and the temperature
readout should acknowledge the
disconnected temp sensor

Pass “No Data”

Plug the temp sensor back into the
box

The computer application should now
continue to get data from the box and
display it

Pass

Observe the data being collected The computer application should be
updating the temperature about once
every second

Pass

Set the minimum temperature on
the computer application to 20 ℃,
include a valid phone number in
the box for a phone number and
then cool the sensor to below that
temperature

The computer application should
send a text message to the phone
number given

Pass

Set the maximum temperature on
the computer application to 20 ℃,
include a valid phone number in

The computer application should a
send text message to the phone
number given

Pass

ECE:4880 Principles of Electrical and Computer Engineering Design Page 21

the box for a phone number and
then warm the sensor to above that
temperature

Change the desired message to be
sent and then get the temperature
above or below one of the
min/max thresholds

The text message should now match
the new message

Pass

Turn the switch on the box to the
off position

The box should power down and no
longer do anything when the button is
pushed

Pass

Observe the computer application The computer application should
continue to update the temperature
data

Fail

4. Project Retrospective

a. Project Outcome

Overall, we stuck to our original plan well. From our first meeting to the
final checkoff, we stayed on track and were able to complete the lab at a good
pace. Looking at our design process, we were able to stay on point with most of
our decisions. We think the only change we would add to our device would be a
better design for the software component. We had a small delay in our readings
and believe if we fixed the software design piece by using threads, our delay on
the display would have been less. This design error could have been avoided if we
spent more time on the software design portion of the lab. This would have
provided a strong backbone for our prototype and would have kept us more
organized. However, we think the end product we created was solid and we
created a device that could be used everyday.

b. Changes for Future Labs

For future labs, we would like to change a few factors which will make
our final project a more efficient device. In this lab, the one issue we would like to
fix for next time is making sure we implement a better design for the delay on the
temperature reading. We were able to get a reading on the display, however, the
delay was longer than we wanted. In our software, we used threads to check if the
button was pressed and this caused a minor timing delay on our display. We think
if we did not use the threads and implemented the software of the button better the

ECE:4880 Principles of Electrical and Computer Engineering Design Page 22

delay for the temperature reading would have been much less than 20 ms. Another
change we would make is making sure to read every requirement thoroughly. The
one part we missed was that if the raspberry pi was shut down the graph would
still read data. Our design failed for this test, because we used the raspberry pi and
a computer with a server-client relationship and when the raspberry pi was shut
down the data was not picked up from the pi. To fix this, we would need a
different design choice and make sure to have software that would connect
directly to the display so even when it shuts down the data is still received. These
two changes are small and if we implement them for the next lab, we will be even
more successful than we were with this one.

c. Roles and Responsibility

Throughout the lab, we all contributed a lot to the final outcome of the
project. We were able to split the work and get the majority of the lab done
together in our allotted time slots every week. As a team we met every week twice
a week for about 2-3 hours in order to accomplish all of the necessary components
of the lab. The first meeting for the lab was primarily planning; we set up a
document to make sure we stayed on track and what we wanted to accomplish
each week. We think this is what set us up for success, meeting early and getting a
plan in place for the weeks to come. As for the roles and responsibilities of the
group, Matt was in charge of most of the hardware components of the lab. He was
able to get us started with the raspberry pi and temperature sensor to get us off to
a quick start. Once we had the temperature sensor wired correctly, we were able to
get started on the software to make sure the sensor was giving us data that we
could work with. In one of our first meetings we were able to accomplish the
simple code to make sure the sensor was providing the information we needed.
Following this, we hooked up the LCD and we worked together on getting the
display to work properly. Most of the software components of the lab were
completed as a group during our meetings. Tim implemented the software behind
implementing the text message. With the GUI component of the lab, we split that
up between the three of us and we all worked on a separate part of the lab. Tim
was in charge of the graph, Austin did the work with the button, and Makenna
was in charge of putting it all together and making sure it all flowed together. The
teamwork shown above is the reason we were able to get the lab done at an
efficient pace.

The lab provided us with a few small challenges as a team. We believe the
key to our success was starting early on the tasks for the lab. When we came

ECE:4880 Principles of Electrical and Computer Engineering Design Page 23

across an issue or challenge i.e, getting the temperature to display on the LCD, we
worked together to find the best way to solve the error. With multiple people
working on the one issue we were able to figure out the problem quickly. We
realized that this was a lot of work and we would have to make progress each
week so we had to use our strengths to our advantage. Matt being the main
electrical engineer helped with the hardware components and then with the
software pieces we shared the load during our meetings. We think there were not a
ton of negative components of the lab as we worked well together for the past few
weeks. Overall, we think we allotted the right amount of time to get the project
done to the best of our abilities and we should continue to do this for the next few
labs.

d. Project Management

Throughout the lab we implemented a waterfall and test driven
methodology to complete most of the lab. This was because we completed most
of the lab in phases and we needed to make sure all the requirements in each
phase were met correctly. Phase one consisted of the hardware implementation.
We knew we needed to complete this part first to then be able to implement the
software. Also in phase one we completed a series of tests to make sure the
hardware components were correctly working. This is when the test driven
methodology was implemented. Once we knew all the hardware was working, we
started phase two which was the bulk of the lab which involved the software. We
implemented a server-client relationship between a computer and the raspberry pi
and had to perform a series of tests to make sure the server and client
communicated to each other correctly. Phase three was started after this, which
consisted of the GUI that outputted the graph to the user and had inputs for the
temperature and the minimum and maximum temperatures. This is the part that
we had to key in on the major software design requirements. We had to include
multiple different things on the graph and make sure the inputs were correctly
implemented. This part of the process took a ton of time as we had to design the
GUI to be user friendly and visually appealing. The tests for this part of the lab
were specific and we had to make sure we were interfacing the GUI and the
server-client in order to get the correct outputs. Phase four was a vital part of the
lab which was a final run to make sure all the requirements were met and the final
device was working properly. In this phase, we ran all necessary tests to make
sure nothing broke the program and the device still worked. This phase was the
biggest part of our plan and we would have missed a few requirements had we not
completed this part.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 24

e. Gantt Chart

Attached below is the Gantt chart we created on the first meeting we had
as a group. We believe we stuck to this chart well and it was a major reason for
our success in this lab. We decided to split the tasks up and we completed the
components of the lab weekly in order to stay on track. We fell a little behind in
the software for the GUI interface because we were trying to figure out the layout
we wanted for the lab and it took us a little to agree upon the correct layout for the
graph and user inputs. However, besides this the lab was split up well and
assigning roles for the requirements was key. Another minor piece of the lab that
could have gone better was spending more time on the design of the software. We
felt that even though we knew the outcome we needed to slow down in the design
portion so we could be more efficient with our testing and final product. This
means that we should have spent more time in the planning part and then also
adding a step in the Software Development that includes a better design
component so we can stay more on top of the software. Besides these two minor
points, we had great success and we want to carry this into future labs.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 25

5. Appendix & References

A. Circuits

This section will explain in further detail the multiple circuits that are apart of the final
design of the temperature sensor.

1. Temperature Probe Circuit

Figure A-1: Temperature Probe Circuit Diagram

The temperature probe circuit has 3.3V of power running from the 3.3V GPIO pin on the
raspberry pi to the breadboard. There is no need to connect this voltage to the positive rail of the
breadboard as it is the only component that uses the 3.3V source from the raspberry pi. Next, the
wire from the 3.3V GPIO pin is connected to the Vcc wire of the female XLR connector for the
temperature probe. The second connection is the ground connection coming from the ground
GPIO pin on the raspberry pi and this runs from there to the negative rail on the breadboard. The
third and final connection is the data connection which plugs into GPIO-04 on the raspberry pi.
As can be seen on Figure A-1 there is a 4.7k Ohm pull up resistor between the Vcc power and
data connections. This resistor is necessary so that the DS18B20 can set the signal high and low
to transmit temperature data. This works together with the one wire interface so that there is
potential for multiple sensors to use the same wire.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 26

2. Toggle Switch and Momentary Push Button

Figure A-2: Toggle Switch and Momentary Push Button Circuit Diagram

The toggle switch and push button are directly connected to raspberry pi via jumper
wires. The button is a momentary push button and is normally open. The button when pushed by
the user will close the circuit and the circuit will remain closed for the duration that the user is
holding down the button. Once the user lets go of the button the circuit is again open and its
close function will end. In this design when the button is held down the temperature data will
display to the LCD screen if the temperature probe is plugged in or it will display “No Data” if
the temperature probe is plugged in. The toggle switch controls the on/off state of the entire
device. It is completely controlled by software and the controls are defined in the shutdown.py
script that runs at the startup of the device. The corresponding GPIO pinouts for each of these
components can be seen in Table 1.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 27

3. LCD Circuit with Contrast Adjustment and MOSFET controlled Backlight

Figure A-3: LCD Circuit Diagram

In the circuit containing the LCD screen there are two minor circuits contained within the
overall design. The first one being the contrast adjustment circuit. This circuit is composed of a
50k Ohm potentiometer connected to the contrast pin of the LCD. The 1st and 3rd pins are then
connected to the 5V power rail and ground respectively. The potentiometer varies the resistance
therefore varying the current to the contrast pin allowing the user to adjust the contrast of the
LCD screen. The screen if not adjusted properly can be very difficult to see so setting this
contrast to the perfect clarity is important for the temperature readings. The second circuit in this
diagram is the MOSFET which controls the LCD backlight. When plugged into the raspberry pi
with power being delivered the LCD backlight will always be on and there is no way through
software alone to turn it on and off. A solution to this is to add a MOSFET into the design
connected to the cathode or pin 16 of the LCD. This pin is connected to the drain of the
MOSFET and the source is connected to ground via the negative rail on the breadboard. The gate
of the MOSFET is connected to a GPIO pin on the raspberry pi with a 1k Ohm resistor in
between so as to not exceed the MOSFETs gate conditions. Through software when the user
pushes the button this sends a signal for the GPIO pin connected to the gate to go from low to
high outputting a voltage and opening the MOSFET so that current can flow from drain to source
allowing the backlight to come on. Once the user lets go of the button the GPIO pin is set from
high to low the MOSFET gate closes and the backlight is turned off.

ECE:4880 Principles of Electrical and Computer Engineering Design Page 28

B. Datasheets
This section lists the data sheets for some of the components that have them

available online.

DS18B20 Temperature Probe:
https://www.quick-teck.co.uk/Management/EEUploadFile/1420644897.pdf

2N7000 N-Channel MOSFET
https://www.onsemi.com/pdf/datasheet/nds7002a-d.pdf

LCD 1602
https://www.openhacks.com/uploadsproductos/eone-1602a1.pdf

https://www.quick-teck.co.uk/Management/EEUploadFile/1420644897.pdf
https://www.onsemi.com/pdf/datasheet/nds7002a-d.pdf
https://www.openhacks.com/uploadsproductos/eone-1602a1.pdf

